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Abstract: Background: We report a rare case highlighting the progression of liver disease in a male
patient with idiopathic childhood-onset growth hormone (GH) deficiency. Case presentation: The
patient was diagnosed with hypopituitarism at six years old and was treated with thyroxine therapy
and GH for his short stature, with testosterone added at the age of 15. GH therapy was discontinued
when the patient was 18 years old, but thyroid and testosterone treatments continued. The patient
had been taking medication for hyperlipidemia until the age of 30 and was noted to have impaired
glucose tolerance at the age of 40, but HbA1c levels remained normal. At the age of 47, esophageal
varices were incidentally discovered via endoscopy, revealing liver cirrhosis. Laboratory tests showed
liver dysfunction and abnormal lipid levels, and hepatitis viral markers were absent. The patient had
no history of drinking alcohol or smoking, and no family history of diabetes. Results: Ultimately, this
case demonstrates that metabolic dysfunction-associated steatotic liver disease (MASLD/metabolic
dysfunction-associated steatohepatitis (MASH)) is under-recognized in GH deficiency cases and
can progress to liver cirrhosis. Conclusions: Therefore, careful evaluation of MASLD/MASH in
childhood-onset GH deficiency is necessary, and GH replacement therapy should continue into
adulthood, if possible.

Keywords: childhood; growth hormone deficiency (GHD); metabolic dysfunction-associated steatotic
liver disease (MASLD); metabolic dysfunction-associated steatohepatitis (MASH); esophagus varices

1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by the
presence of steatosis in over 5% of hepatocytes associated with metabolic risk factors such
as obesity and type 2 diabetes, and with the absence of excessive alcohol consumption
and/or other chronic liver diseases. With the increasing prevalence of obesity, MASLD has
become a common cause of chronic liver disease [1]. MASLD is a disease on a spectrum
spanning from simple benign steatosis to metabolic dysfunction-associated steatohepatitis
(MASH) with fibrosis and scarring that can eventually lead to cirrhosis [2,3].

MASLD is highly prevalent and associated with significant adverse outcomes through
both liver-specific morbidity and mortality and, perhaps more importantly, adverse cardio-
vascular and metabolic outcomes. It is closely associated with type 2 diabetes and obesity,
and both conditions may progress to more advanced stages. The mechanisms that govern
hepatic lipid accumulation and the predisposition to inflammation and fibrosis are still not
fully understood but reflect a complex interplay between metabolic target tissues, including
adipose and skeletal muscle, and immune and inflammatory cells [2,3].
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While the association between MASLD and obesity has been well documented, en-
docrine disorders such as growth hormone (GH) deficiency, hypothyroidism, hypogo-
nadism, and polycystic ovarian syndrome are known in clinical practice to be associated
with MASLD [4,5].

In this study, we report a patient with idiopathic childhood-onset GH deficiency who
received GH to treat his short stature during childhood. The clinical course progression
of liver lesions (from MASLD to MASH) was unnoticed until the incidental discovery of
esophageal varices due to liver cirrhosis. This study aims to report the clinical course of a
patient and review the current knowledge on the pathophysiologic mechanisms of GH in
MASLD development.

2. Case Report

The patient was born via breech delivery and with asphyxia at 40 weeks of gestation
at a weight and height of 2320 g and 45 cm, respectively. He was delivered as a small-for-
gestational-age (SGA) infant (weight below the 10th percentile for his gestational age). At
six years of age, he was referred for treatment because of his short stature. At that time,
he was 95.0 cm in height (−3.5 SD on the growth chart for Japanese boys) and 16.0 kg in
weight (−1.7 SD). He had normal body proportions. Routine laboratory analysis ruled out
hematologic, liver, and renal diseases. An endocrinological examination showed extremely
low GH responses (<5 ng/mL) to provocation tests with insulin and arginine. Serum
somatomedin-C (insulin-like growth factor-I, IGF-I) could not be measured at the time as
no measurement method had been established.

The patient was diagnosed with hypopituitarism, presenting with deficiencies in
growth, thyroid-stimulating, luteinizing, and follicle-stimulating hormones. Pituitary-
extracted human GH (phGH) injections and oral thyroxine were subsequently started.

Intramuscular testosterone injections were started at the age of 15 to promote sec-
ondary sex characteristics (the patient’s final penile development stage was Tanner 3). GH
therapy was continued only until the age of 18 (in the year 1985), but thyroid hormone
administration and regular testosterone injections were continued thereafter. Regular blood
tests during GH therapy revealed no abnormalities in liver function or serum lipid levels.
His neurological and psychomotor developments were normal.

After the patient became an adult, he had to move for work and received follow-up
treatments at another hospital. He lived a normal daily life without any notable problems.
From the age of 30, he received drug treatment for hypertriglyceridemia. Impaired glucose
tolerance was noted at 40 years of age, but glycated hemoglobin (HbA1c) levels remained
at 4.9–5.6% (normal, <5.2%) with sufficient exercise and diet therapies.

At age 47, the patient experienced stomach discomfort and underwent upper gastroin-
testinal endoscopy, which incidentally revealed esophageal varices (Figure 1). There was
no relationship between the stomach discomfort and the esophageal varices. His height
was 155.2 cm (−2.5 SD) and his weight 72.2 kg (body mass index: 29.9 kg/m2). The patient
was not married and worked as a computer engineer. He had no family history of diabetes
mellitus and no history of a drinking or smoking habit. In a physical examination, there
were no cutaneous changes indicating extrahepatic manifestations of palmar erythema or
spider angioma. Moreover, dilated superficial abdominal vein and hepatosple nomegaly
were not observed at that time.

The laboratory findings showed the following measurements: 4940/µL of WBC (neu-
tro: 62.0%; lymph: 26.9%; mono: 7.7%; eosino: 2.8%; and baso: 0.6%), 16.8 g/dL of
Hb, platelets of 12.7 × 104/µL, prothrombin activity of 65% (normal levels: 80–120%),
47 IU/L of AST (normal levels: 10–35 IU/L), 25 IU/L of ALT (5–35 IU/L), 151 IU/L of
γ-GTP (10–50 U/L), 304 IU/L of LDH (124–220 IU/L), 231 IU/L of ChE (210–550 IU/L),
1.3 mg/dL of total bilirubin, 0.6 mg/dL of direct bilirubin, 3.3 g/dL of albumin (3.8–5.3 g/dL),
67 µg/dL of ammonia (12–66 µg/dL), 14µmol/L of total bile acids (<10µmol/L), 140 mg/dL
of LDL-cholesterol (65–139 mg/dL), 26 mg/dL of HDL-cholesterol (>40 mg/dL), and
126 mg/dL of triglyceride (30~140 mg/dL). An endocrinological examination revealed
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4 ng/dL of IGF-I (90–250 ng/dL), 1.09 ng/dL of free thyroxine at 5.4% HbA1c (0.7–1.48 ng/dL),
and 236 ng/dL of testosterone (264–916 ng/dL). No hepatitis virus markers were detected,
including hepatitis B and C. The antinuclear antibody titer ×40 (<1:80) test for liver fibrosis
yielded the following measurements: 125 ng/mL of hyaluronic acid (normal levels < 50),
an APRI of 1.06 (cut-off value of 0.7), and a Fib-4 index of 3.48 (cut-off value of 2.04).
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Figure 1. Upper gastrointestinal endoscopy showing esophageal varices in the lower esophagus
(arrows). Varicose veins have the same color as normal esophageal mucosa. Bleeding or redness on
the surface was not recognized. Judged to be grade 1.

Abdominal ultrasound showed a liver contour with an irregular appearance, consistent
with the findings of liver cirrhosis (Figure 2A). The spleen was enlarged, and ascites were
absent (Figure 2B). Esophageal varices were thought to be due to portal hypertension. A
liver biopsy was not performed because of its associated invasive risks.
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3. Discussion

In this case, Wilson’s disease and noncirrhotic portal hypertension (NCPH), which can
cause liver cirrhosis from childhood, were ruled out based on the current medical history
and clinical test data.

GH and IGF-1 are crucial for linear growth during childhood and for maintaining
significant metabolic functions throughout adulthood [6]. In this case, hypopituitarism,
primarily characterized by GH deficiency, was attributed to pituitary stalk interruption due
to a birth injury, although this was not confirmed via brain magnetic resonance imaging [7].
In instances of pituitary stalk interruption, T1-weighted MR imaging can reveal the absence
of a pituitary stalk and the presence of an ectopic lobe [8].

The patient commenced GH replacement therapy at age six. Despite this, his final
height, measured at −2.5 SD as an adult male, was suboptimal, primarily due to the limited
availability of recombinant human growth hormone (hGH) before 1988 [9].

GH and IGF-I are vital for growth in childhood and have important metabolic roles in
adults. Adult GH deficiency (AGHD) is associated with increased visceral fat, dyslipidemia,
premature atherosclerosis, reduced quality of life, and elevated mortality [10]. Cardio-
vascular disease, cerebrovascular disease, and malignancy are significant contributors to
premature mortality in AGHD patients [10,11].

Recent case studies and clinical research indicate a correlation between AGHD and
a heightened prevalence of MASLD, with progression to MASH or cirrhosis [5,12,13].
MASH diagnosis relies on liver biopsy histology, which shows steatosis, inflammatory cell
infiltration, hepatocyte ballooning, and fibrosis, potentially advancing to cirrhosis and hepa-
tocellular carcinoma, resulting in a poor prognosis [14,15]. Risk factors for MASLD/MASH
include obesity, metabolic syndrome, type 2 diabetes, dyslipidemia, and particularly insulin
resistance [12,13].

3.1. GH and IGF-1

The liver is a significant target organ for GH. Initially, the somatomedin hypothe-
sis suggested that the liver was merely an organ secreting IGF-I [16]. Recent evidence
highlights the crucial roles of both GH and IGF-I in the liver, particularly in adults. GH
serves as a major metabolic hormone, optimizing body composition and regulating energy
and substrate metabolism. It enhances fat metabolism by promoting lipolysis and fatty
acid oxidation, indirectly activating hormone-sensitive lipase via β-adrenergic stimula-
tion. GH also boosts low-density lipoprotein (LDL) clearance by increasing hepatic LDL
receptor expression [17]. GH affects glucose metabolism directly and by counteracting
insulin action and suppressing glucose oxidation and utilization while increasing hepatic
glucose production [18]. In protein metabolism, GH reduces urea synthesis, blood urea
concentration, and urinary urea excretion while lowering protein oxidation and stimulating
protein synthesis; its effects are mainly mediated via IGF-I, though direct GH actions are
also recommended [19]. Conversely, IGF-I enhances glucose sensitivity through direct
and indirect mechanisms, including the feedback inhibition of GH secretion [20–22]. IGF-I
strongly promotes protein synthesis and inhibits protein breakdown [23]. Generally, GH
and IGF-I work synergistically across various tissues, except for IGF-I’s insulin-like actions
(Figure 3).
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progression. The figure is adapted from reference [12] (NASH has been renamed as MASH in 2023).

3.2. GH Action in the Liver

GH locally generates IGF-I for autocrine and paracrine effects [24], but circulating
IGF-I predominantly originates from hepatocytes [25,26]. Liver-specific GH receptor dele-
tion (GHRLD) in mice led to significantly reduced serum IGF-I levels, with GHRLD mice
displaying normal linear growth but reduced bone density like liver-specific IGF-I deficient
mice [25]. Notably, GHRLD mice exhibited insulin resistance, glucose intolerance, elevated
free fatty acids, decreased triglyceride efflux, and severe steatosis, underscoring the impor-
tance of GH signaling in the liver. In humans, GH receptor loss-of-function mutations (e.g.,
Laron syndrome) also manifest as MASLD, with chronic IGF-I replacement not affecting
MASLD status, suggesting GH’s direct role in preventing steatosis in hepatocytes [27]
(Figure 3).

3.3. IGF-I Action in the Liver

Patients with chronic liver disease and malnutrition show reduced free IGF-I levels
despite normal or elevated GH secretion, given that the liver is the primary source of
serum IGF-I, as evidenced by GHRLD mice [28]. However, IGF-I does not directly impact
hepatocyte function as hepatocytes have few IGF-I receptors under normal conditions [29].
The literature indicates that IGF-IR plays a crucial role in the liver [30]. Nishizawa et al. [31]
demonstrated that GH-deficient dwarf rats exhibit MASH, which is reversed via IGF-I and
GH administration. IGF-I’s effects on the liver may involve mechanisms, such as improved
insulin sensitivity, as IGF-I deletion from the liver results in insulin resistance [32], sug-
gesting that increased levels of circulating IGF-I can alleviate MASH partly by enhancing
insulin sensitivity. Additionally, IGF-I’s anabolic effects on muscle protein metabolism
are beneficial in chronic liver disease. GH-deficient rats showed impaired mitochondrial
morphology, with IGF-I reversing these abnormalities [30]. IGF-I also mitigates oxidative
stress and improves mitochondrial function, as IGF-I administration reduces oxidative
mitochondrial damage, corrects mitochondrial function impairments, and decreases cas-
pase activities [32]. Consistent with these findings, IGF-I administration improved liver
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dysfunction and fibrosis in a rat cirrhosis model and mitochondrial function in aging
rats [33].

In humans, MASLD correlates with low circulating IGF-I levels [34,35], with IL-6
and IGF-I serving as independent prognostic factors for liver steatosis and MASH in
morbidly obese patients [36]. Hyaluronic acid levels, a fibrotic marker, negatively correlate
with IGF-I and the IGF-I/IGFBP-3 ratio in patients with MASLD [37]. While GH has
a direct role in hepatocytes regarding anti-steatosis and gene expression [37–39], these
findings suggest that IGF-I exerts GH-independent effects in the liver through various
mechanisms [12,13]. Collectively, GH and IGF-I are crucial in liver function, influencing
hepatocytes, macrophages, and hepatic stellate cells to counteract steatosis and fibrosis
progression (Figure 3).

3.4. SGA Impact on MASLD Development

The patient was born at full term but had a low birth weight of 2320 g and was an
SGA infant. Ibanez et al. [40] found that SGA children between the ages of two and six
years gained more total and abdominal fat and had greater increases in insulin, IGF-I,
and neutrophil-to-lymphocyte ratio, compared to appropriate-for-gestational-age (AGA)
children. At six years old, the average amount of visceral fat in SGA children was >50%
higher than that in AGA children.

Soto et al. [41] found that the fasting insulin concentration in one-year-old babies was
significantly higher in SGA infants with catch-up growth than in those without catch-up
growth and AGA infants. These data indicate that pathophysiological mechanisms linking
prenatal growth and postnatal sensitivity to insulin are present at as early as one year
old [42].

A case report published in 1997 noted improvements in fatty liver associated with
panhypopituitarism after GH administration in full-term but low-birth-weight infants,
suggesting that fatty liver is at least partly attributable to GH deficiency [43]. Persons with
low birth weights or who were thin at birth have a high prevalence of insulin resistance or
metabolic syndrome, with the co-existence of glucose intolerance, hypertension, and hyper-
triglyceridemia. Several recent studies suggested that insulin resistance could lead to other
metabolic disorders in children, adolescents, and adults born as SGA infants, including
type 2 diabetes, dyslipidemia, and MASLD. Therefore, SGA birth is thought to be a risk
factor for MASLD [44–49]. Ultimately, it is thought that progression to MASLD/MASH
may begin in childhood for children born as SGA infants if they have GH deficiency.

3.5. Adult GH Deficiency (AGHD)

In this case, the patient required continued GH injections into adulthood, but GH
therapy under health insurance for AGHD was only approved in Japan in 2009 (when the
patient was 42 years old). In 2004, clinical trials in Japanese patients with AGHD confirmed
that GH administration improves body composition and serum cholesterol profiles [50].

4. Conclusions

Accumulating evidence clearly demonstrates that MASLD/MASH presents critical
complications of both adult and childhood GH deficiency, which can worsen an individual’s
prognosis. This case emphasizes the importance of continuous GH supplementation from
childhood to adulthood in a patient with childhood-onset GH deficiency.
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